Solving resultant form equations over number fields
نویسندگان
چکیده
We give an efficient algorithm for solving resultant form equations over number fields. This is the first time that such equations are completely solved by reducing them to unit equations in two variables.
منابع مشابه
Solving Index Form Equations in Fields of Degree 9 with Cubic Subfields
We describe an efficient algorithm for solving index form equations in number fields of degree 9 which are composites of cubic fields with coprime discriminants. We develop the algorithm in detail for the case of complex cubic fields, but the main steps of the procedure are also applicable for other cases. Our most important tool is the main theorem of a recent paper of Gaál (1998a). In view of...
متن کاملA Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملGeneral Formulation to Investigate Scattering from Multilayer Lossy Inhomogeneous Metamaterial Planar Structures
This paper presents a general formulation to investigate the scattering from Multilayer Lossy Inhomogeneous Metamaterial Planar Structure (MLIMPS) with arbitrary number of layers and polarization. First, the dominating differential equation of transverse components of electromagnetic fields in each layers derived. Considering the general form of solution of the differential equations and the bo...
متن کاملSolving System of Linear Congruence Equations over some Rings by Decompositions of Modules
In this paper, we deal with solving systems of linear congruences over commutative CF-rings. More precisely, let R be a CF-ring (every finitely generated direct sum of cyclic R-modules has a canonical form) and let I_1,..., I_n be n ideals of R. We introduce congruence matrices theory techniques and exploit its application to solve the above system. Further, we investigate the application of co...
متن کاملSolving the Korteweg-de Vries Equation by Its Bilinear Form: Wronskian Solutions
Abstract. A broad set of sufficient conditions consisting of systems of linear partial differential equations is presented which guarantees that the Wronskian determinant solves the Korteweg-de Vries equation in the bilinear form. A systematical analysis is made for solving the resultant linear systems of second-order and third-order partial differential equations, along with solution formulas ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 77 شماره
صفحات -
تاریخ انتشار 2008